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GENERALIZED INDICIAL FORCES ON DEFORMING
RECTANGULAR WINGS IN SUPERSONIC FLIGHT

By Hanvaro Lomaxe Franatyy B Friiew, and Loda Suokk

SUMMARY

Y omethed ds presented for determining the Uine-de pendent
Jlow veer a vectangular wing mocing with a supersowie forward
speed and wndergoing small rertical distortions expressible as
polyronaals tneolring spanwise and chordwise distances.  The
xolutron for the relocity potential is presented in a form analogous
to that for steady supersonic flow having the faudior “reflected
ared”” concept discovered by Frerard.  Particular attention is
preeed to snidiciad-type motions and resulls dare erprossed in terms
of generalized indicial forees.  Numerical results for Mach
swumbers cqual to 11 and 1.2 are qiven for polynomials of the
Sirst and fiith degree in the chordwise and spanwise directions,
respeeticely, o a wing haring an aspeel ratio of 4.

INTRODUCTION

One of the basie problems arising in the analysis of wing
Hutter boundaries is the ealeulation of the acrodynamie forees
on wings undergoing small but arbitrary spanwise and chond-
wise distortions. When the wing aspect ratio is large (actually,
when the distance between spanwise nodal lines s large),
these forces are usnally estimated by some strip theory in
which the loading on each spanwise section is approximated
from that on a two-dimensional wing having the same chord-
wise distortion.  This report is concerned with low-aspect-
ratio rectangular wings for which tip effects are important
and the full three-dimensional theory must be used.

The exact linearized solution for the forees on thin rectaun-
eular wings (limited. however, to the range where effective
aspeet ratio (L3721 1) s 2D traveling at supersonic
speeds has been presented by both Gardner (ref. 1) and
Ailes (refs. 2 and 3) in terms of multiple integrals involving
arbitrary surface undulations.  However, the nse of such
solutions in evaluating. numerically say, the forees induced
by specific wing distortions still presents some difficulties,
It is the purpose of this report to discuss certain techniques
that ean simplify the labor involved in these caleulations and
to present numerical tables for the forees induced by a class
of surface deformations, a ¢lass general enough to represent
the first few mode shapes of reetangular plates.

Mathematieally the problem is to find and analyze a solu-
tion to the four-dimensional wave equation

1
Gt Py ey =0 (la)
iy

(where a, is the speed of sound. ¢ is the time, and r.y.z are
space eoordinates) that satisfies the appropriate boundary

conditions. The particalar form of the solution to be
analyzed differs from those presented by Gardner and NMiles
but 1ts development is based on the method due 1o Gardner,

Hadamard (ref. 41 studied o generalized form of equation
(la) in which the number of dimensions was arbitrary. His
solutions to these generalized equations are fundamentaliy
different, depending on whether the total number of dimen-
stons s odd or even. Tu fact, the methods Hadamard de-
veluped apply directly only 1o equations for which the ol
number of dimensions is odd.  Solutions for the even cases
(such as eq. (laiy are determined by a method of descent™;
that is. the solution for the next higher odd-dimensioned
equation is found and then rediced Ly nade andependoad
ofv one dimension. 1t is apparent, however, that such a
techiigue is initself by no means unique. Thus, Hadwimard
found the solution 1o equation (lay by descending from a
solution to the equation

1 \
For Eu Ve ERT L 0 (1
but there are many other partial differential equations and
groups of partial differential equations governing a five-
dimensional (ry. 2 8.6 space all of which satisfy equation
(1a) in a plane £ - constant.  Gardner discovered a set of
equations containing cquation (la) in o ¢ - constant plane
which are simpler than equation (1ain that solutions coubld
be found and adapted to the boundary conditions for time-
dependent motion by methods well known to aerodynamicists
who have studied the flow about wings in steady supersonic
flight.  This is the essential part of Garduer's contribution
and it represents the teelinigue upon which the development
of the solution presented in this report is bused. Aetualiv,
Garduer first applied w Lorentz transformation to equation
(1a) and then used his method outlined above.  The appli-
cation of such a transformation is unnecessaey and has the
disadvantage that the resulting coordinates have lost their
divect  physical  signifiecance. We  will apply Gardner's
method of descent directly to equation 1 La) and then proeced
to analyze the solutions so obtained.

In order to simplify the analysis as much as possible, we
will imit solutions to the plane of the wing, and, further,
consider anly indicial-type bonndary conditions: in other
words, unsteady motions in which the wing attains instan-
tancously, at the time zero, a certain spunwise and chorld-
wise distortion which is thereafter fived. It is well known
that the transient responses to these indicinl motions can be

Supersedes NACA TN 324 hy Harvied Lomax, Franklyn B, Fulier, and Lomas Sluder, 1954,
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nsed, i a superposition integral, to obtain responses to many
other (ypes of nnsteady wotion: i particnlar, responses to
the Taemonie oscillations of nonrigid wings.

Finally, the principal interpretation of the results will be
made in terms of generalized forees, since these ean be used
direetly i either Hutter or gust studies, and it will be shown
that the amount of lubor required to ealeulate sueh forees is
reduced by using reciprocity relations derived from the |
general theorems presented in reference 5.

LIST OF IMPORTANT SYMBOLS
N uspect ratio
u, <peed of sound
", amplitude  of indicial-downwash distribution
INee eq. a0
THY beta function (See eq. (Blaar)
By copogr incomplete beta function (See eq. (Btsho
iy influenee function for effeet of side edge See
[RIRER Y AN
“ it coutlicient, T
(oS
‘., indic! Lift coctlicient due o angle-of-uttack
,
change, without pitching, ¢, 00
@ Qda, . !
‘) indicial lift coefficient due to pitching for a wing |
.
rotating about its leading edge, € 4=O(L \
) ) ¢0y e
‘., pitehing-moment coetlicient, positive when trail-
ing edge tends to sink relative to leading edge, i
moinent
IINYS i
. indicial  pitching-moment  coeflicient  due  to i
angle-of-attack  change  (without  pitehing) !
. .o, |
measured about the leading edge €7, =7 ™ i
2 O 4.0
. indlicial - pitehing-moment  coeflicient  due to
pitching measured about the leading edge for
a wing rotating shout its leading edge. Cn,
oc, :
h ()l[ v oo ;
¢ wing chord
Fron generalized indicial foree coeflicient (See eq. |
(3600 !
it generalized indicial force coetlicient (See ey, |
(3700 ,
hiryt distance of wing camber line from =0 plane |
M Mach number ;
Ap loadi - L . }
oading coctlicient (pressure on the lower surface
’I" minus pressure on the upper surface divided i
by free-stream «dvnamice pressure)
" . . - no n!
( ) binominal ('()(‘ﬂl('l(‘ll(.( ):
m m m! (n—n)!
. . Y .
Yy dimensionless rate of pitehing, . i
. 1 -
Yo free-stream dynamice pressure, 5 ol
- generalized coordinate
Q. generalized foree corresponding to the gener-
eralized coordinate q.
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nr real parst of
I’ [ A SR LT
" NI vy g
r Vieor SNy o
N W seHspan
S Wi area
S, area of acoustic plan form
AW aren of reflected aconstie plan form
t al’
I time
t
,QI
.
FIRERY i
& 3
T wing Kinetic cnergy
U wing potential energy
I, forward speed of wing
W (%)
[0 RV
" vertical veloeity
£y Curtestan coordinates, fixed relative to the fluid
at infinity
Toluty coordinates with origin on center of wing leading
edge (See fig. 130
roihy coordinates with origin on center of wing leading
edge at time zero Nee fig, 14))
;
Ju ¢
Mr-t
- 8
.\'1(’7) .:3{ (l.m Y ’m"“ ":)
o angle of attack angle between flight path and
plane of wing), radians
3 AT
0 wing angle of piteh relutive to horizontal, posi-
tive when trailing edge lies below leading
edge. radians
¢ coordinate measuring fifth dimension
. free-stream density
e veloeity potential
e portion of velocity potential induced by sources
in acoustie plan form
¢ portion of veloeity potential induced by presence
of side edge
¥ potential funetion in five-dimensional space
Subseripts
A8 regions i an s, £ plane (See fig. 7.)
" upper side of wing, - 04

. singularity (e, g, souree) position
LI VI regions on wing shown in figure 4
STATEMENT OF THE PROBLEM
THE GOVERNING EQUATION
Assuming a wing’s vertieal motion is of such a nature
that the velocities indueed in the fluid are small relative to
the magnitude of the wing's steady forward motion, the
normalized form of eqguation (1a)

I R CTHA t1e)
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where t at’, can be used as the governing partial differential
equation of the How ficld. This equation applies to the
determination of the veloeity potential when the body or wing
in question moves through the Huid, the axes remaining
fixed with respect 1o the sull tuid infinitely distant from the
origin.  For convenicnce we place the wing leading edge
on the y axis at ¢t 0 and the side edge on the 5 axis, The
wing flies at a constant forward an the negative ¢ direction
speed 50 at subsequent times the feadinge edge fies aloag the
hne o« Mt where M s the Mach vumber, and the side
edge move  atong the »axis as shown in tigure 1.

x: - Ut

Frovie Lo Wine tn tisoed Coordinate <y e

THE BOUNDARY CONDITIONS

The Huid veloeity normal 1o the surface of a <olid moving
i frictionless fluid must be zero. 1 the equation of the
solid’s <urface is represented by

(iiry. st -0
this boundary condition can be expressed mathematieally,
in terms of the coordinate system used in equation (le), as

o6 opoli.
ot " 0rdr

O Off

o0l
ooy

F +<):-():M

Consider a thin surface near the = - 0 plane. The equation of
the camber line of this surface can then be expressed in the
form

Gley V- —hiryt 1 =0
and, assuming that thickness and lifting effects can be

separated linearly, the boundary condition for the eamber
line becomes

O Oh
OrOr

+O_‘p O,,K_Qf =0

ok
ot dydy o:

o e T

1

i

I the derivatives of & with respect 1o cach of the coordiutes
ave snll. the two middle terms can be neglected and e
expression for the houndary condition reduces 1o
ok O¢ .
= waroyg
o Or ., o
We wish to ~imdate a pectaneular wing deformed -
dicially by bending in the spanwize and chordwise directions,
For this purpose. on the portion of the = 0 plane ocenpield
by the wing plan form. the vertical veloeits . which determines
the wing <hape aecording 1o the previous eqnation i< assunied
to have the form

1) [
o \_;)ﬁiu,,,,(’”(-”’)‘(-:()' -

where ¢ is chord length, a,, i~ a0 constant and 7 and o are
integers >0

The expression v - W' is nsed so that for/ 0 the tangent
to the wing camber line at the leading edee 1< tangent 1o the
irhc-path angle of the leading edge. Consider. for example,
the case /1o 00 Fhe downwash

w, ”l”u-- Mt

‘
represent< an infinite class of snrfaee shapes hava - the form

(L

friw gy el

fer - Mty frap] 2
where fuea i< an achitrary funetion and A a=. by definition,
the distaner of the wing's camber line from the @ 0 plane.
Sinee, within the aceuraey of linearized theorv, the solution
for the flow about the wing depends only upon the value of
wiegp ), the Tonding on ol the wing< represented by the
above equation i= the smne.
Let us inspeet the two special eases

th faan e

i foryr 0
For ¢use i1
Y

el .“‘.'_).I‘l IRV

hir gty -

and the wing iz a flat plate pitching at a uniform rate abont
it leading edge which is following the flicht path

llm.‘l”’/"

(/H“.; - R
2el

as shown ? in figure 20 Henee, at time £ the tangent to the
flight path of the leading edge is

D e dt
,,{'“ ¢

The slope of the leading edge of the plate at the same time is

, , ’
(gJ‘ )IJ-.' f,l'{{

and the two slopes are seen to be equivalent.

le in both fleures 2 and 3 is purposely distorted i order to make the sdrawnes
assumption v mnosetting up the boundary -value problem, by means of whieh
determined. was that the surfaes of the wing nuzst getnt near the 0 =0 platie,

the loading was
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STV I

kirogty . .
' 2l
and the wing s a plate which obtained a sudden parabolie
camber at £ 0, a shape it maintained thereafter as shown ?

:

mn Heaee 3.

-
ot}
v

|
o
s

.
T sE c L oos
a7 B R

Frovre 3. -Plate with parabolic camber.

The problem is linear, so it will be sufficient to determine
a solution for arbitrary Land »oand then add results for any
combination of terms desired. Thus, the complete
boundary conditions to be studied are

MY

s

w sy = 2a)
over the wing

the remaining portion of the plane

~=() ofl the wing 2h)

¢
()' r=0
sinec the loading i< given by

A 4+ 40
t[(.) o ]..\l( Of )

SOLUTION FOR THE POTENTIAL

Figure 4 shows the wing plan form on the surface of which
the potential is required, together with the system of axes:
also, traces in the =0 plane of the wave system set up by
the indicial motion of the wing are indicated.  The wave
pattern for only two edges is shown: the flight speed is super-
sonie so the trailing edge has no effeet on the veloeitios in-
duced over the wing surface, and the results are valid (in

plan form. and. sinee the loading is zero over

ADVISORY

COMMITTEE FOR AERONAUTICS

their entirety s only for 3.1 2 1, <o the opposite edge cither fias
no effeet or one that can be incorpornted by simple super-
position.

The wave traces divide the wing area into several regions.
indicated by the Roman numerals, in cach of which the
analytical formulation for the potential is different. Region
£ consists of that part of the wing where the effect of neither
the sude edge nor leading edge has vet been felt
1. the side-edge intluence s acting (he line g

In region
¢ s the tenee
of the starting evlindrieal wave from the side edge o 0
Region 11 s the part within the
sturting evlindrical wave from the leading edge. but outside
the wthience of the <ide edge. This remon. and region V)
are further subdivided for reasons that will appear tater
Region 1V 0« w compound region: potentind there can be
found by adding the potentials for regions 11 and TH amd
subtracting the potentinl for region 1. Region Vo consists
of the portion of the wing within the spherieal wanve origi-
mating at the wing corner. The How over the part of the
wing comprising regions V/oand VT has reached a <teady
state relative toa point on the wing, and the potential there
= 1st that for the corresponding parts of a rectanglar wing
with the proper downwash disteibution in steady motion.
Finallv, region VI is again a composite region, its potential
being the <um of potentials for regions T and VI less the
potentinl for region 17/

AL the regions just Listed. with the exeeption of region
17, are netually governed by the three- (totaly dimensional
wave equition and the potential therein could be obtained
by methods applicable to this simpler equation.  However,
in thix report we shall present a unified approach and the
problem will be solved by the samie methad in all regions.

but not the leading edge.

T4,

"

[Pl BES NI

8
Frovne 4 - Regions used in the analysis of a rectangular wing in
supersonit unsteads inotion.

REVIEW OF KIRCHHOFF'S FORMIULA

The solutions developed in the subsequent seetions are
more clearly interpretable i they are compared with certain
known results that have already been determined for the
indicial motion of nonlifting wings with svmmet rieal thichness
distributions or lifting surfaces with all supersonic edges.
The purpose of this section is <imply to review briefly <ome
of these Intter resnlts,

13
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GENERALIZED

As e osteady-state wing theory, there s a formula for
tine-dependent Hows that relates the veloeity potential to
distribution of time-dependent sources and doublets over
This formuda is due 1o
Kirchhoff, and some of s aerodynamic uses are discussed
Kirehhotf's result s immediately apphicable
in the ~study of unsteady hfting-surface problemns when the
potential van be represented by sources alone, that s, when
the upper and lower surfuees of the wing do not internet, as
15 the ease we recions LI and VI of fign o 4.

certain region an the wing plane.

in referenee 6,

Kirchhot!'s formula for <ource  disteibutions can be
Writen
vt e, .
Gyt — ” I }t/,rlt/_I/l (3)
2e b .
\vl
where
r rooay S7N

The brackets on e, indieate that the retarded value is to be
taken
for. |

w et e

and Nindicates that the region of ntegration is the acoustie
plan form corresponding to the event ot
cepts are disenssed at length in reference 6.

These con-

A< has been pointed out, equation 3 holds for cach of the
revion~ [ T and VI but the aren of integration S, differs
considernbly from one of these regions to another.  Consider,
for example. the determination of ¢ for vegion [11, denoted
v Partoof the boundary of the acoustie plan form S,
i+ found by eliminating 7 between the equation of the
leading edee, i, MT, and the expres-ion

N N TA AT A
which gives the outer bonundary, at “time™ £ of all the dis-
turbances that, operating at “time” 7 can produce an effeet
at the point ey This boundary i< the ellipse

R B T T L (4a)
(" i / h
where

Mr -t FAREN

Tas vh,m=
8 8

If the point wroyr lies within the evlindrieal wave from the
leading edge. that is. <7028 the ellipse of equation 4
camprises oy part of the acoustie plan form, the remaimder
being bounded by so much of the cirele

oyt iy eyt F t4h)
Figure 5 shows the three

)
I'he

as lies on the wing at time zero.
possible acoustic plan forms for points in vegion 11,
limits for the three types are

W t>r>0
(iiy 020> 4, M

iy =t M>r>—1

e e

INDICIAL FORCES

ON DEFORMING WINGS

v

Froovke 5.

Aeovisaae plan furmes for region FHD ot thegre o

and these correspond to the subregions I H and (1]
wentfied in tigure 4
potentinl in, =ay, vegion I, ns

Using equation 51 we can write the

. .

1 vt AL A AR 7
Y, T, ‘/!II . day
2rJ, Joove oy oo

1 wento- Ny TR
.,I J 4/// ’ I” . 4/1' '.-H
20 o e Jovow oy
where
. RY) ) )
A A AN PN A T

GARDNER'S METHOD OF DESCENT

Equation 11e. governs a four-dimensional sy ot <pace.
Our object, of course, 1= to find for this cquation a solution
that satisfies the boundnry conditions i the @ 0 plane as
specitied in eguations 2oy and 2ho 0 Obviously, we can
always constriet a space of more dimensions governed in an
arbitrary way except that it must <atisfy equation (heran
an syt hvperplane. Theno if a solution i this higher
dimensional <pace which satisfies equations 200 and 2hs
in the £y o plane ean be found . it represents= for £ cthe addi-
tional dimension: equal to some constant the solution to our
problem. It s
not obvious, of course, that such u method leads to any
simplifieation: but, with a proper choice of the governmge
equation for the new space. such a possibitity always exist<.

There are examples where varions applications of this
method have proved to be useful.  Hadamard's use of the
method, mentioned in the introduetion, is elus<ieal. A simple
applieation of his method is the derivation of the veloeity
potential for a source i a two-dimensional <supersonic flow
field.
the step occurring at the Mach waver is easy to derive if one
three-dimensional field with o line of <ources
normal to the free stream and untform i strength. The
two-dimensional ficld mentioned above follows mmmediately
by deseent.

In other examples the additional dimension s measured
with imagmary numbers and the additional law for the ex-
tended space is the requirement that the funetional depend-
enee on the resulting complex variable shall e analytie,
The method of deseending in the latter vase is associnted
with the stndy of analvtie comtinnation. In particular.
Riesz's method vdisenssed in ref 7y for <olving equation 1¢)
illustrates these coneepts,

Thix characterizes the method of descent,

This potential field twhich amounts to a <tep Tunction,

constders a
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Gardner's methad for solving equation (1e) is to define a
tive-dimensional space it which a potential function ¢ s
governed by the equations

Vi
¢::

)

Yoo
w'n

Ve O
Yoo 0

b

and show that solutions to equations 61 in this space are
general cnonigh to contain general solutions o equation ey
ina plane ¢ We shall. therefore, proceed by ana-
Ivzing these equations and eventually let £ approach a plane

constant.

i which the boundary conditions of cquations Cavand 2L
For convenienece, the latter plane is taken to
0 plane.

are <atisfied.
be the €

Sinee equations cbas ad bhe are hinear. 2 namber of
possthilities exist for the choice of the dependent variable

Yoo oy so 00 e Asude from the more obvious  cholee
Veroo oot ey st where @ is the veloeity potential
of cquation ctes: for example. one could 1ot g,y 200, 6

Foa o s or s, Yot e o 00 b sty o b These

vartons choices amount only 1o relatively minor differences
11,

e impesing the bondary comditions of equations (2, one

in the detatled technigue of the subzequent analysis,

= to use only souree-type solitions for both equations thas

Therefore, set

l:t;)‘ la, _.E,I)] wtry. )
s S

Now ditferentiate cquation thas with respect 1o 2 and <et
IR

and o65ho. the fast cholee s sufficient.

iy}

Detining

Wig.roph g“' ) N)
cquation st ean be oxpressed in the form
W, W.-Wg, o 19
and the boundary conditions for equation (9 are given
direetly by equations (200 Thus on the wing
ol Oy s M oy
OF L w 0- .. ey ) :l,,,( . ) (‘) (1)
ard off the wing
olf’
b edry 0 0 (10h)

o' :’ 0

Assuming equationr (45 to have been solved for the bound-
ary conditions given by, equations (10), we return to the
second of the et of partial differential equations (61, spe-
cifically.

"’fi 2 2T

From equation Sy, it is seen that the =olution to equation
(91 vields the result

CTteun be shown that the solution satisfies the seueation
fim ¢ lim . ! lim _, _limy§ lim . i

ADVISORY
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0‘% Konown Tutiction of 5.8 on the wing

Further, the boundary conditions for the origanal problem

e,y oS0 E spaee require that ¢ be an odd fanetion with
respeet to oand continuous across the 0 plane exeept
over the wing plan form. Thus ¢ must be zero for o 0

exeept over the wing plan form. The continuation of thas

comdinion into e,y 2 80 spaee then implies. according o

eepiantion 7 that off the wing

Y,
of .

Heneeo both the <econd partial ditferennal eguation and s
boundary conditions are wenteal i form to the first et
amd o, Applying
to their dual solution, we obtam the desired

I:‘;) ¢u*,y,(l,;‘./;] R NAINS
< L

for the potential on o rectangular wing cwith 201 -1

given by equations 9 respectively
cquation 17

result

<uperannie nnsteasdy motion,
THE GENERAL EXPRESSION FOR THE POTENTIAL

The method oatlined in the preceding seetion will now
be applied to obtain integral expressions for the potennial
inoany region of the rectangubar wing <hown o figare +
Consider first cquation 9 for Wi oo
the same partinl ditferentinl cquation as that which goserns
supersonie steady flow,

This eqrmtion =

Fuarther. the boundary values o
£ space are identieal to those representing o thn
Sieee the Maeh

the & or,
planar wing in a ~teady supersonie flow,
mimber i the <teadv-lon anadog i 20 the equivalent
plan form of this wing <hown i tigs 6 s a sweptforward
wing Up haring all supprsonie cdges a0 e the component of
the frecestream velocity normal 1o all edges 15 snpersonie
Sinee afl edees of the equivalent wing plan form are
supersottic. the solution for Woean be written immediately

v

plan form in g space.

Frovee 6o Fanivalem




GENFERALIZED INBHCIAL FORCES ON DEFORMING WINGS 7

th terms of Csourees”™ only s their strength bemnyg given by
equation toas. Thus, by analogy with the well-hnown

vesilts of supersonie wing theory, we huve

. Vit wotr, . _\’f,,l HIJ‘.l it

Weert — H Tt iy
LGN \<’ ta- E rort

where 7 s the aren on the wing eant out by the forecone from

The anals tie form of 1 will ditfer con-

stderably o cuel of the theee reons above the cquivalent

the pony &0, 4

Wity shown an figure 7.

Feooao 700 Begfons fnowhich anabvoe forva of W0 ditfer-.

The valie ot Bociven by equation o1l now beeomes o
boundary condition Tor the solation of cquation b Thus,

over the portion of the 0 plane for which y o0 8200

. . Oy . . .
the varation of ov_' = now known and for o 00 00
the condition 0 apphies These conditions are
~ 7 0

Al not sathcient 1o determine o uanigue <olution nnless
the tarther restriction s imposed that the loading falls 10
zera as the edge o O G appronched el sy 002 00 Again
we observe that these boundary conditions and the partial
ditferential equation by arve identieal to those studied
connection with a stationary planar wing in a supersonie
streant,. s shown in figure 7. solutions from the ¢, o, & space
above the £- 0 |)hnn' are referred to as WL W and 1,
depending on the relution between o and £ in a f - constant
plane.  Fignre S shows the five different boundary-value
problems formed by the various combinations of W W,

POATL TS 2

and W oceurring along coustunt & hnes o the o0 8 plane
atd the corcespotading regions i figare 4 for which each
applies. Fuach of these five peoblems s diveethv analogous
to the boundars value problen chcauntered i steady ~tate
hiung-surface theors of a planar. rectangalar Lifting suctaee
e steady supersonie stream. The leading edges™ of
these analogous rectangalar plan forms he alons the hues
[ (AR R T T A PR ah'pvlnhh;’ vir the value of

i ~i

100

Lrore g oar

o

P -y o
B )

{,

‘.
~

[
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B
T 322228 2822822222282
tiv} SESEOR SR jegsssast }
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Frotne S0 The five different boundary-vabue problems m & w5

~pace,
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and the ade vdie” hes abong the hne 4 v Henee, e
weans of Hus steady flow analog, we can imiediately winte

the solunon to equation <8b. e the form

1 ""u';.,4,;,;11“/5”/,,,
LU ST LR

Whaet o odc the area of integrntion o mnst be discrss .

First. o the
peant S0 hes to vhe ryghit of the dashed hines i heaee S,

o posabtlities exist for the <hape of o

which e the analogons steady -How  problem represent the
traces of the Mach cones from the leading-edae tips, o 1~ the
for vecion L1110 tiire W part

7 D between this line and the side edge,

trahgvlny area shown
I however, ¢
v Woa s the trnpezondad wren shown for region V', oan figare
The betver i~ nowell-huown resalt used i steady
supwersonws Liftmg-surface  theory
Eavard nof s
ihistrated e tgaee s anto the final twelve, represented by
the rewons i fgure },

4 parnt I
wnad  first t||'\'|'|u|w1| hA\
The division of the five kinds of problems

1~ broucht abour by the varions

combination< of W0 W and W that can oceur in the nren o

as the point & assames all necessary valoes on the winge
When ¢ has been determined, the potential i the phy <ienl

dane = forund by cquation 7 or. combinimg equations -+l
. i |

and 12
1 d ¢t gy
oyt Chme H e )
w0t M sy 0w
h
’.J' wooro- A‘I/:_q,-:/_r :/" b
! 3
LY Y A I R VI
3
Vel 42
3
;
'
I3
GG e v
Frootvwr o i of mtegration o ysed inoeguation 12

ADV SO

CONIMEL PR PO AR RON AT JHe s

A detuled aualyais of cquation Lo foe a potn 5 4t
regton VD of e 1 s aven i Appendin A and o <tudy of
thi~ anmlyv<is cnubles ane 1o weite the resalts for all recions

without dithealiy

INTERPREFATION OF THE RESILTS

The cesnbts of the rather dovobved aadysis coven e A ppen-
Ay \can beanterpreted i ters of the ks o sobutions o
~tunpler bonndary vondimions Phiese larver <olitions banve
afrends been reviewed inon previons section e which f was
~howi that thie potentiad onca bfvine caface wint alt <uper -

~onte edges can he witten o the form
| AT PR
ot H et

Ix ), '

From Appendiv Ao as found that the potentil nr o proat
o a vectungubar hfting suefaee can abwas s be expressed -
the ~um of two parts

L N A N N B A [ N
where
Vg e s
’ r r.
llllni
10h

Lo
G A o ’J (owyyods dy
= J

The valiwe of ¢ 5y ~gnven by cquation A0 Appendin
A aned the arens of mtegeation. S, and N are dlostrated for
the varons pegmons b through VL i fumare in

Lt i firest inspeet eqguations 1500 heht of therr possible
analogy with the famihar <olution for the <tendy <t ree-
tangular bfunge <urface. I o rectangular wing huvinge ar-
bitpney twist and camber s placed inoa <teady <apersonie
flow. the =olution for the potentmd on s <urface can alao be

expressed as the sum of two parts

O A L T A | R A L P
where, if
LS A LR B AT
' 1 ' .".‘.’/JAV'I"/z -
IR T | TR : Von
: T 0, 7
and
" l,l'*‘/’ -
RN PR ’ " rTh

.
7,"’ ]
These ecquations ean be constened i the follow e simple wan
Fguatton 17a: represents the patentmb indneed st s .0 by o
distribution of <onvees over the wing pluw for, cack ~oures
having a <teeneth proportional to the local <treamwise <lope
T'u‘ arey -\._.
the portion of the wang within the Nach forecone tiom
17h
distrthution of

of the upper <urfaee i~ <l o Henre 10

Fguntion has w sl interpretations w0 alsa

thie

_l'_lI/.“

represents g ~odltees over Wit e h

having a <trength proportionai to the loeat slape ol the appe
But the nrea of !lllv",.'l'nlinn .\'» I~ tuow that povitinn
;/_‘I;

wpfae
of the wine warthan the Nach forecone from the porny

4
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i
iy 2
) -
o
I
AN
AY
\
N,
N
N\,
N
~
N Vil
A4
v
(v.-y.0)

Voo ue 10 Arens S el S ased o cquano 1T

that = withun the cone which forms a mirror unage of the
pliv=teal Mael forecone o the vertieal plane containing the
winge s sude vdwe The potentinl =< rp 00 represents the
diferenes between the potentials for a wing with a vertieally
~vimnmetriead thickness distrthution and o <urfaee with no
thickness having the <same <shape as the apper surfuce of the
nordilnne wing.

Lot nsveturn now to equations 13 WJdust asin the steady -
state ense. =g 00 represents the potential indueed at

.

o by s distribntion of sources ssee e 30 over the wing

plan form. cach proportional 1o the toeal slope of the wing,
Bt now . s the wing i< i maotion, with the added con-
divion that they be loeal stopes at the approprinte nme. The
aren N <hown i figiee TEoas just the acoustie plan forn
detined carlier i the dhsenssion of equations 35 and -8
Physically 0 S, vepresents those points on the wing from which
disturbanees can. ot the time £ inflaence the flow at w00 I
t~ the enersnhzation. in the stationary coordinate syvstem. of
the wing area boanded by the Maeh forecone,

The relation between ¢ ot and ¢ 2 w000 s <imilar
to that between theie <teady-state analogs. Thos, again,
o et represents the differenee between the potentials
for an uneambered nonlifting wing and o lifting <urface
having the <ame shape as the 1op of the nonlifting wing.
move steikimg simtlarity lies in the relation between S, and S

We have already seen that 8, s the acoustic plan form,
atd.asat turns ot S, ds the refleclion of the acoustic plan form
in the rertical plane containing the <ide vdge tsee lig, 120 a

v

Froune L} Aeoustie plan form for point mnorecion Voo hleone

~itimtion wdentieal to that existing betweenS and 8 mothe
steadvestate case. Tl other words, S, 1= the aconstue plan
form for the event 400, und Nt the acoustie plan formy for
the event oo ot Phasically S0 represent~ the portion
of the wmg's lower surface contaimmne disturbanees which can
at the tune otluenee the low at rop o onthe wing's upper
surface. At thas point the simtdneiny between the steady and

unsteady solutions ends sinee the mfluenee of the <opes in

=Y

Frover 1200 Retlected aconstic plan form for poitd i oregron 10 o
figure 4

L
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the veflected plan form is not the saume as it is for the slopes
in the basie acoustic plan form: the inluenee in the former
case how betng given by the integral ey defined in
cquation (10,

One can show, by simply referring the results given in
cquations (131 to a coordinate system fixed on the wing, that
equations a0 and (13by are identical, respectively, 1o
equations (17ar and (7hy when they apply 1o regions VI/
and Viindigure 4 regions in which, for indicial-tvpe motions,
the flow as steady relative to the wing.  Henee, equations
B and (5hy extend Evvard’s retlected area™ coneept to
all purtsof a rectangular wing i supersonie unsteady motion.

THE GENERALIZED FORCES
REVIEW OF LAGRANGE'S EQUATIONS OF MOTION

In order 1o detine more elearly the subsequent concepts
and notation, we will brielly review Lagrange’s equations of
motion as applied to distorting wings and will examine a
simple application 10 a rectangalar wing,

Lagrange’s cqiations are usually written

}/,O.I—OI—iOI Q. 120 LNy
A 04q. Q4. " Oy,

where

T Kinctie energy of the wing

I potential energy of wing

0 ageneralized fexternal s foree

¢ azeneralized coordinate

In the present application 4. is the amplitude ot 1 given time
of u polynomial measuring A, the vertieal displacement of the
wine'< eamber Hoe from the = 0 plane. Thus, relative toan
2 coordinate sy<tem that is fixed on the wing, see figure 13

/H,r.]/,l'l ‘\,_:4/‘(/';['.(1'._]/1 (19}
! ! ’y
i
t >0 c
s
*3
£

X3
Frover 130 Wing in moving coordinate system,
C s of tarther interest 1o nutee that eguation (E3be can be redigeed 1o 4 double mese!

tvalving ity by using, for example, the temsformations $= o« Myl r=/—f and
nterrating with respeet to g,

The wing's Kinetie energy can be written

T JJ "'I'c-‘/uu“y‘h/,, dy [

where mois the wing mass per unit plan form area. Using
cqguration 19 we fimd

;:, :;I S, l l P oy iPoaoyines yodaeady,

droq. =", o1,
ol 0
Oq.

The potential enerey s usually ditlicab to evaluate analbyi-
wally . However it can often be determined expertmentally
tus will be secnn by measuring the frequencies of the free
vibration mode<. For the pre<ent assume that the waing i~ a
homogencous plate of constant thickness. The potentl
eneray for such a wing can be exprossed us cref. 9

Dy g o'l Ok ol
{ 2.“' {1"//) 2t “)[:()]/ P O.I"'W oro, )]} s n///l

(22

which Teads to the vgnation

o v (AT e 10 ol
b l"f"'.”[”'” aowly 20yt Ou

Lol ol o o, Vton 2
2007 O Qr0n. 0r Oy, ol -

where @i Poisson’™s ratin, ¥ 07 0r - 07 0 f. and

2iYounges modulus (plate thickness):
D N .
Sl [Tl

Now if the veneralized coordinates have been normalized
<o that cach measures the amplitude of a free vibration mode.
all terms in equations 21 and 123 involving the integral of
the product of 20 and 12 are zero. Assuming, heneeforth,
stch normalization, we ean weite

IIJ ‘ Pt pamer oy odae dy. - 1y, ‘ ‘ {f\_'/',>‘

o'r. O"I'. ol
9 ol = : L2
200 #)I:O.l'f’ o Ol on ]} {r Q. ro

(24

Finallv, dividing through by the ecoefficient of . and ox-
pressing a generalized foree as the integral over the wing plan
fortn of the produet of the sth mode shape and the loadings *
S aps induced on the wing by each of the maode shapes
considered, we tind

v Ap
'l"\’_././‘l':hl'.‘._'/d( ’I’ ) drgly.
A .7, o
i ./.‘/'/";“"-J/(”H‘.l',(A_l/,‘)rlAr;,tllr/( Y
where w. i the frequeney of the rth free vibreation mode.

CWe walb write (Ap o e Ap e wWhiere g is the Tr
possitble withott 4 conlision of notatton stnee the geneetdize ] coonstimtes are expiressied s

stnan dynoanie pressare. Thos s

gy oo and exetde the berm g




GENERALIZED INDICIAL

If the free-mode frequencies are experimentally deter-
mined. equations giving the wing's
potential energy. never have to be evaluated. Further, in
such cases, equation (23 applies 1o quite general wing steue-
tures with varving density. Usually in the applieation of
equation 23, one uses the actual frequeney o, of the Tree
mode but, in evaluating the acrodynamic forees, uses an
analytical expression that only approximates the rth mode
shape. Lot us examine the geneealized forec term in equa-
tion 231, taking. for simplicity, only one term of the sume

such as equation 23)

Q. o ‘ ll',(;u,y,) ( -‘\If)) ) drgly, (26)

According to what has gone before, the mode shape poly-
nomial P00 has the form

Lolry) ( f‘ )) ( ',I’ ).t

while (3p ), ix the loading coctlicient corresponding to an
indicial deflection (see previous seetion on boundary condi-
LS}

(27

o w Ty (s A M ”

ey e () [(‘) (8 ) e

which gives a vertieal veloeity distribution
W b sy (Y2
w, lnq:(l)(")(c)

Now a generalized indieial foree coetficient can be defined as
follows:

(29)

fingpt 1 AN R
it S q‘“).f.[( “) (:“) {ap quyJd gy, (30

'The caleulation of these quantitios f12¢) will be elaborated
in the next section.r Sinee the generalized foree ). is
intended to apply to any motion, not neeessarily indicial,
it is necessary to apply Duhamels integral to the indicial
foree coelficient f17(7: thus,

LA R ,
Q. .S " J git'—r )I: dr

. 1) )

As an example. consider now a simple one degree of free-
dom vibrating plate.  The plate is fixed to a wall and
restrained along its leading edge. The mode shape is ax-
<umed to have the form

’

k- {'l[l(")('?)-‘(!?) (32)

so for a plate with uniform density and thickness

‘o " mxe 5y}
32 — o
’"JV! ’I.’/:&J” s PR (ry )= 25 (p)

Equation (25) now becomes

L 25 sey!
e q':m.\-(-(;) K¢

(33)

r———————————————

FORUES ON

!
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DEFORMING WINGS i1

For this ease. we have the generalized indicld foree coetlicients
S, and By

d flare’y
o ROPPPRPS R
[V T o J 2qat’ o1 )[ e ]+

[ AR
RTRT AR B 1+
0" e . i34)
¢ g b
Therefore, equation 33 ean be written
|
. , Digu ey d 7 R WA
e Dyt MR ,
gowcn (.\» ) ’/’,"“ 24 14 i hi
\
¢ )
oty I’
| . ‘1 T} r e

« .
gt
0,
THE GENERALIZED INDICIAL FORCE COEFFICIENT

It is clear from the previous seetion that a study of the
dynamie behavior of rectangular wings moving at supersonie
speeds can be carried out if one can obtain values of the
generglized foree cocflicient, fi2¢t°1, as defined by equation
(301, We will now show how these values can be obtained
from the solution to the aecrodynumic boundary-value
problem represented by equation 14

It was convenient in developing equation (14 to use a
coordinate svstent- +.24  which was fixed in space so that
the left edge of the wing moved along the 7 axis as shown in
figure t. On the other hand, in studying the dynamie
problem it was more convenient to use an sy i000 system
which is fixed on the wing. In order to convert the results
in one ecoordinate set to the other, let us first transfer results
in the s 2.0 set to the ruy 3.t set (shownin figure 14 and
then, finallv. transfer (o s, .20t coordinates.

Xy eV
Y3 /g
2372,
r =2
' s
i -y,
=0 c

*q

Frovre 14.- -Transformations from moving to fixed coordinate system.
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The mndicial foree coethicient F2000 is detined as follows:

SO B M . \It o _
Fiogh “J . t/.l‘J“ :I!/( )( )(?I'I')) (36

bn vrder to transfer the axes from the set shown in figure 1
to the more convenient set of ligure 14, so that mode shapes
are svmmetric o asvmmetric about the wing's spanwise
eenter hine and the foree coethicients denoted 12 can be deter-
mined, we proceed as follows.  First, the loading coeilicient
for a wing in the (g svstem with downwash given by

w, g M s
- ( ) t)(./(‘ )
:__A(.rr-—l..\[f) —‘l)”Z(—])u(")( })n,(:,)..

] 2

n

15 obtaimed.
sum:

This loading coeflicient can be written as a

I) in e B
() == v (G ) 6

w=0

Now the quantity 17 is defined in the roy,z0 0 system as

1 :'21,“ J‘j‘;:‘f lr, fj' dy, ( Iy “..\If )’(_,‘/‘ )l( 'i[{’,)’"
S I TG () PO

This Inst integral can be written as

R SR L)
l)h,,[l-*\*l)" w)g( g)(%)l—vg(_n“(’;)

(2) " S e (G

v using equation (36) we find

" ll-f—(‘l)t "]g( ”,(i/;)(%)l—.g

" (:) (é)“ CFe @

where all forees are responses to a unit indicial disturbance.
Note that if equation (37) is applied in the case of a wing
cantilevered on a wall, both » and ¢ must be even in order
to satisfy the boundary conditions of reflection in the wall.

By superimposing boundary conditions and their result-
ing solutions, one can further show that the value of fir
given by cquation (37 is valid for all reduced aspect ratios
8.1 greater than 1 in spite of the fact that the value of F!r
given by equation (361, as it stands, applies only to wings
for which 8.1 is greater than 2

Given S0, one can determine the generalized force as-
sociated with the generalized coordinate ¢, by means of the
superposition integral as illustrated by equation (34).

-

o

COMMITTEE FOR ARRONATL TS

DETAILS OF CALCULATION

The details of wetually evaluatmyg the indicial foree co-
efficients from the ~olution for the porential presented i the
first part of this report are discussed i Appendin B
sideruble labor s involved in such caleulations, and an

Can-

attempt was made to discover reeursion formulas by means
of which certain derivatives, for the rectangulur wing, could
be expressed as combinations of others. This attempt was
suceessful and vielded the following results:

Consider equation 365, Integrate the s integral in this
cquntion by parts, setling

.. in
uiri J ”,-\P dy: deiry - Mtyds

o

Then, sinee by equation (B7) in Appendix B

o _\l‘lu ”/‘ —\P’ ton [\,“
()J' (I“ ¢ o ’ .
one finds
X ’ Y » K " . "
. s Fiovu— kg (3Nan

Inspection of equation (37) shows that the same relation
holds for the generalized indicial foree coefficients £ that ix.

/. R .
‘legfj_ ol froe (38b)

L1 Jo RN

From this relation, it is seen that only the forces F42 need
be determined by integration; the forces for higher values of
the index 1 ean be found by combination of results for dif-
ferent values of the mode shape index J.

As a simple illustration of the results presented so far, we
can calculate the indicial foree derivative for the cases /=
n=g¢=0,j=0, 1. The case j=0 corresponds to the indicial
lift coefficient for a flat, sinking, rectangular wing, and the
case for j=1 corresponds to the indicial pitching-moment
coefticient for the same wing.  Sinee n=g=0, equation (37)
gives

,u 1":'3

Thus, with j=0 and identifving -—an {7 as angle of attack
a, one finds from Appendix B

. . _fu
(L um,( o \I[I
\1!‘, -1 M
”{ [ + 3 o
N \ 1 1 N .
vie—( —A‘llu)']'—_; 1 ["- 1 +2lln‘("— 1 )’n-]} .

<6<

\If..)] 0<t < 1

= I(.‘[_ﬁzfn)‘+

I l
M-+ M-

1 1y,
:3(‘_23;1)' "‘2_\117-1
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Next with ;1 and using €, 7 10 designate the pitching that is, the Wft coeflicient for a pitehing wing equals the sum
moment measured about the leading edge of the wing, of the hift and pitehing-moment coetlicients of a simking wing
. , (primes indicate the wing is pitching about and moments are
. : _
o — . _ = — )= - measured about the wing leading edger. Heuee,
( "a ( (1 [ ,u) \/ {( ! 2 o ) ’ ' " ‘
. 1 M, Y 1
| | Ly (|+ 0 Y R S S M | SR
e M D R 0L < , ' \l{ A 3 A1
21 RERY m.,[} <SSy ;
‘ YN : .
___'.’ | \ I'.") .)_,‘.U!‘.——I+ ; "{ [ l+ u)\ " lf\dlvns TRV Y. TS
M\ ( 2 Jres tu : "
M M . BoMG e = DTN bas0r e
3 VMgt + 2 \'¢.‘~(I~.\If..)':|— ! o M e 6l g T »
ya\: 1 rod M- [ St<
3ty — M= 1), 1 <t < i { )ty "
.,\[\1 M ""], M- ShSyy " 2
|
- 1 ; 2 1 ]
e : > i . - 4 ,
u(' 451) b2y ;3{' :id.l} W2y
These expressions agree with those given by Miles in refer- A further application of equation (38a) provides the piteh-
cnee 2. ing-moment coeflicient for a pitching flat rectangular wing.
The above results can be used to demonstrate the useful- | Thus, with /= j=1. r=y=0. equation (3%a) gives
ness of equation (38a). Taking j=n=¢9=0, [==1 in that
equation gives j = HFR—F
Flo=Fo—F% which becomes
or. for the present case, =38 —r0
and so
fo=rR—A
A I;l( 20 YA )
which represents the equality "N ~agely e
() =C+Cn/ From equation (B21) in Appendix B it is found that
BT M MOL+3) !
Jao ! +
§ =B e uaore b ooses
—['l‘

[ o
1 [11=M? Mte—1 1 M ;
:A\I{;’[ 3 -~ cos™! ‘”‘t’o +5 8 cos™ (M —g,)+

L4 Mg+, o o 1 3 o o |
9 A} tO _(l .‘1!0)‘]"22:4 [‘,‘[+ l +4l()_(~‘l l)"ll‘] N A‘l’f ] S,OSJI— ]

4 (1 1 . 1
—B{ 37 4B } P b2

Combining, we find

,_ 2 24—:\1&,“ h, . 1
Crg ‘_.\1{ 3 2.1 [8S—6.Mta+ MM+ ;)tndl} 0<t,< M
2 12+ M- 2M e x‘"-”"r_(A‘F‘fg)'_g: e 72]-‘
—.\l{;[ 3 cos™! " +3 Bu); WM —gt)+ g Vi (1~ Mty

1 3 X " ; . i 1
_EZA[“[_LI+8t,,—b(.‘[—‘])fn +(“['—])’f¢)‘]}y Ma1 S"'S“[Al

af2 11,
="B{§"I§A}' b2y

[mﬂrﬂ%'*v“’"’t‘""""ﬁ e SRR T

~ e PO, e h e mnte e van [P e A it ;. x
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Another relation among the generalized indicial forees fio
can be derived by means of the reciprocity relations given in
reference 5. The details of the derivation are given in
Appendix C and there results

. [y ‘
(»W( )/ -2<~|)~( )./, (30)
e B D0 [ R

Equation (39) can be used i two wuyvs: one, as o means
for checking the mternal consisteney of a set of caleulated
generalized indicial forees, and the other, as a means for
expressing a given force in terms of a set of others.

Consider, as an example of the former use, the cuse for
which /=5 - 0. Then

Gn . fig
Jaog = o

From equation (37) we can express this relation in terms of

the calealated quantities F9 thus

S ()5 u4~x4y”“"-m:

=y =
LB

If now n-=1, 9= 3 the following relation results

- )+ [(1'u£ o 3R —F+

H(y ) Fu—F+2 (5 ) (Pr—Fp=0

which provides a useful cheek on the computed quantities.
Next let us solve equation (39) for a given force.  Perform
the sum operation

e
/Zu(“l) )

on both sides of equation (39), and reverse the order of
summation on the left side. There results

¢
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i
" ::-i‘) e J i< M

“ 1449
' The inner sum on the left can be evaluated.  Thus one has

,
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t
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Equating coetlicients of r,

» 0; reop
Semye) {800

=t

and cquation (401 becomes

u }:wn!( )L1 1)»(1)[3

CONCLUDING REMARKS

A method is presented for evaluating the generalized forees
on a rectangnlar wing flving at supersonic speeds and having
an aspeet ratio such that g.4>1. The generalized coordi-
nates used to define the wing's behavior are the amplitudes
of downwash distributions expressed in terms of polynomials
in . and y, the chordwise and spunwise directions, respec-
tively.

Numerical results are presented in table 1 for generalized
indicial forces on a wing having an aspect ratio of 4 and
flving at a Mach number equal to 1.1 and 1.2; the polynonnal
coverage being 0 <I <1 and 0<r <35, where w ~riy™.
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APPENDIX A

EXPRESSIONS FOR THE POTENTIAL

In order to write the expressions for the potential in all
regions shown in figure 4, it is sufficient to derive in detail
only that for region V. Having carried out this analysis,
one ean determine the expressions for poteutial in other
regions without ditticulty.

Consider, therefore, equation (13) and let ¢ and 7 apply
to region V,. First, it s necessary to determine the poten-
tinls W, and Wy in the tr g space.  From equation (11}, in

conjunction with figure 7, it is found that

IJ‘(+ VE-ES U (.ﬁ* ‘!’l '/l)’”'
* r—yn-gi

J‘t— Yol L .
v ViR B (e — )

(A1) |

v R ALY .
W, — IJ 'I”J u ““.1, Mty y)dt,
LIV AV I —5 M \(l_ ",- _sl.' Ay -"1):
1 "brv NCER; J-,- Voo w ry o Mty oyt

dr ' N ]

Y N A R L
(\2)

where

. M .
X&) 5 N R .

With the values of W given in equations (A1 and A2)
it is possible now to solve equation (6hy for ¢. tigure 8 giving
the required data in the gy plane. Thus, if K2 -8
-

1 X W, 1 (ereit J'r W, lf' J W,
L) — — ! s { o n -
yEruh "JEH—IIIMJHW-W & R "Jy “n £ 'rw" "Rox £y~ \“—:’( 4 Evroy-p El I
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J di J ’IEI
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{ { 2 A
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Now apply the operation of equation (7) and the potential ¢y, is given by
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where B} =£2—(y— ) and the bars on the integrals signify
that the finite part of the integral is to be taken in the sense
defined ! in reference 10 and that the order of integration
cannot, in general, be reversed.?

For convenience set
l )
¢;‘a=—* > 1, (A5)
1

where I, is the ath integral group on the right-hand side of
equation (A4).
Consider the first of these integral sets. Using equation

——

! For the subsequent analysis to hold, the definition of the finite part given in reference 10
is essential. This definition differs from that given by Hadamard when it applies to muitiple
integrals.

* Since the order of integration plays an important role in the following development,
integration first with respect to r and then with respect to y will be denoted Sdy S'dz (1, )
while integration first with respect to y and then with respect to r will be denoted fdr Sdy

7. ). When the notation S Sf(r, y) dydr is uged, the order of Integration is immaterial.

(A1), we ean write

v g £l R
Y -F L J
h Ju—l'y'. o LEE— =) P2 ) yoeia s

f"“’”""“" w, (o -+ Mty )i,
0 VE—h) = () g

In order to simplify this expression, the order of these in-
tegrals will be rearranged so the integration with respect to
£ can be carried out first.  The technique of changing the
order of repeated integrals with strong singularities set forth
in reference 10 will be used here.  Consider the change of
order in the .1, plane. Pretend for the moment, that the
t, integration has been carrvied out. Then the highest order
singularity (since w, is bounded) in the &, », plane has the
order 3/2 which is weak in the sense that no residual occurs

13
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when the sequence of integration s reversed. The top of figrure 150 I this case an inherent singularity exisis at the
tigure 15 shows the area of integration, o immediately couttuence of the singularity lines of the mtegrand: namely,
-~ o owhere 5y tot wr e The o v
. CoeaEe g gt T o cls \ &y ‘/“uml . Vi Fhe change of
I, J ,/,hJ ,[fr}- Lo order van therefore not be performed directly | hat aceount
MY iy e ety -l v . - .
' SRR Sy &f ==t must be taken of the existence of a residual term see ref. 101,
Mo it Mgty This residual s defined as the ditference between the two
w4 . [ A% . . . .
J ) . , imtegrals taken i different orders over o vamshingly small
u V(= =g -

region surronnding  the inherent singularitv ithe dotued

To change order in the &, £ plane, consult the bottom of ! region in bottom of figure 131, The residual 22, is then.

2 thm” l‘\('o«'rc'-" -rgd El’lfl J" SRR I wlr - -”h-!ll)’”l
[ > ) ) 2
) J—u~y, = y—wr’Pede- - V= H P —(r— ¥ 8¢
-1y LR R N T
J w, s - .\Ill.y‘)d!lj- ) - bk, L
t-ry—e -y fx"(!/“!/l)zl"“'\(!*fl)')—(.l".ﬁ)"'fl‘
£, where £ (2=~ (y—y . The second integral vanishes

(see ref. 101, and, passing to the limit - »0 in the first integral
there results
x w oy M—Mry y x |w,]
R, — = :

2 ra 2 re

where the square brackets again mean that the retarded
value is to be taken.  Thus, the integral [, can be reduced to

v Sregtioig—y? 3
L=~} J ".'/J g, (Ab)
“Jdy-t

R YAl A T

In the same way, the integral /; ean be reduced, and

x [ IS TARE A 1T [
X x x I+ 1,= ".,J diy dr, o

SJy-s =y g-yyd
which is recognized as Kirchhoff's formula, equation (3),
with an acoustic plan form bounded by the cirele
¢, (r— 1)+ (y—y)=r

The reduction of the integrals 1., [, I, and [, is quite
similar, leading to the sum

o 1 [ ISV I TN w 1 (o+yri-id
3 > I1= -, dy, dur, I——'l——‘) dipy
1 a7 Jo 1=\ -2 ry =% Jo

o . 2,2 0
w 1 XA w
J ) dr, l _"l'+‘) iy ) s, ted
Xypw=up Fo i Jo T= AP —iy—y? o

(AT)

Examination of the limits on these integrals shows their

total area of iuntegration is that shown in figure 11, But

€ this area corresponds exactly to the acoustic plan form S,

for a point in region 1°.'  Henee, denoting the combination
of terms in equation (A7) by ¢ we ean write simply

| on
- I JJ I,:"l druly, (AR)

////& ----- =15 -

2x

It now remains to caleulate the integrals /. through /.
t | Designating their total effect on the potential, ¢® one ean
readily show (sinee no inherent singularities arise in these
Fierre 15.—Areas of integration used in analysis, cases) that

t
fet-{x-x)
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A B N RENARRI ASTI fere Ay owiay o Myt I RS K
o v ’ i l 1. A, J \R N ‘ ,l \ .{1 ‘ x.__ , ] dy. ' i i,
o g Joowttarn s o [u”'i)"l'..'l\l[’ thv o ™o R AV R
J-, noyv Ay u-:‘u:,-L_\II,. ‘l",h/l, + I_,J. SNVEIRE " Jm ” J-, . \4.,/_,/{:1-“1-‘; - ,\121—}/.,)4”, ’ (A9)
O Y2 R RN TE SEPICE o Vv, M 0 nE e
where r” v s - s Now et and ouly the aconstie plan form 8, changes with the region.

J-. ry \4”"/; W .‘lﬁ-!/l””l —

a MU=ty N — ) —r?
Ciroyg (A1)
J""» vy e - M dt "
N i R A e

In terms of this espression, equation (A9 ean be written
simply
. [ S .
o JJ Clry ) daydy, (AL
R
by

N

where the area (S0, is illustrated in figure 12.

In order to give expressions for the potential in every
region of the wing shown in figure 4, one can show that it is

[ the case of ¢ %, the part of the potential due to the exist-
ence of the sude edge of the wing, cquation « AL van be
generalized and written

S I
e o l[('ln,y,nl.r,-ly, YR

N,

where the integrands are defined in every case by equation
(A10) and only the “‘reflected” acoustie plun form S,
changes with the region.  The region 8, is alwayvs bounded
by portions of the “reflected” cirele

L= ey g2 8

_ and the “reflected™ ellipse
only necessary to vary the areas over which the double
'u‘m.-gr.anm? in c-(.qlmtluns (‘.\M n‘nd (All) are (-arn.ed qut.‘ ({3’ _,-l_,m) Fyr i bt
I'his is evident in connection with the source portion ¢V, -
for in every ease . ) .
1 (.l Figure 16 shows sketehes of both 8, und 8, for all regions in
‘% v . . - .
et 7"'._;;ff o dryly, (A12) | figure 4. The absence of a sketeh indicates that the corre-
S sponding integral does not exist for that region.
APPENDIX B

THE GENERALIZED INDICIAL FORCES

THE LOADING COEFFICIENT

In order to determine total forces acting on the wing, it is
first necessary to obtain expressions for the loading coefficient
Ap qo.  Aceording to the linear theory

Ap 4 Oy

0 UoM (B1)

s0 it is necessary to differentiate each of the expressions for
potential.  As an example, consider, as in Appendix A, just
vegion V7, of figure 4. The loading coefficient will be divided
into two parts Ap Vg, and Ap® /g to correspond to the po-
tentinls ¢ and ¢¥.  Thus, using equation (Al1)

ap\ ? 4 —y+t ; g N N YA .
( /(']—,,—)‘ Vy _12( 'q.‘fl J:) ‘! le,_ VB (g ot n=
R 0 .
J e «h/lj _ ol dr+
0 CJeevn-gapn O

-y 0 O(_ >
J; ’[y“[\'luﬁ'm? ot ‘[II} (l;-)

since the derivative passes the r.y, integration without
effect.  Referring to equation (A10) for the function C'(ry, y1)
we next find its derivative with respect tot. Write r=t—¢,;
then for »,<<0
M Gy w (M= Myl
('(n.?h)=J i) (nt o T -'li’_'

n (FF=rd)y v —ri?

and

YA Vi w,0.y)

G RE CR

o)
J’H—n avdm b"{ll‘u(f:+~‘”“3[7»!/x)} B
ar 3)

) (r2—r?) y 7i—1r)

Notice that if w, does not depend on (r£+ Mt the integral
term in equation (B3) vanishes, while if it does, then the
integrated term is zero.  Next, for r, >0,

o B
gy - [ voe o M~ Ve,

n (P =ryy o
and
o]
. . (n+ M=y,
o _ Ay u.:u(n.y.)+J"4””‘ Of{" (it M= "")} s
ot (fz_l.”!) \ f?__,.‘f " (TZ_I."‘:) \ 72 *"12

(B4

In this ease, both terms exist unless w, is not a funetion of
(ry+ M1, in which ease the integral vanishes,

Substitution of equations (B3) and (B4) into equation
(B2) will now yield an expression for the loading coefficient
corresponding to the influence of the side edge;
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Region Se Sao
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| M

Fiovre 1 Conelnded

[t elear that, even for small vadues of the indices T and ».
the requiired integrations for the determination of total forees
on the wing pose formidable problems. There is, however,
a property of the loading coetlicient corresponding to vertical
veloeity distetbutions ol the type chosen here teq. 20 that
will matectally shorten the reguisite labor. This mayv be
expressed as follows, adopting the convention that Ap'” ¢,

correspornds 1o a downwash distribution proportional o

- My
I 1ot
O Ap I ap Y At BT
or . ¢ .
or
in / v N
A J A e, 10 Bs)
“n « e /e :

DETAILS OF EVALUATING THE GENERALIZED INDICIAL FORCES

In caleulating the generahized indieial forees by means of
equation 36, it has been shown that only the value zero
need be taken for the index /. Thus we must find

0 Y ' 8
e T J WY 2] 4/.I'J s Ap dy Bw
i he o " m

Fhe values of the loading coetlicient 3p™ g are found by
differentiating the expressions for potential given in the first
nurt of this appendiv.

It s convenient, i evaluating equation (B9 o consider

the mtegration with respeet to gy fist. Setting

. ’ ( )‘\’/ Ay

Bl

1ts faund that L oseems to e ditfervnt representations
according to the interval in which 7 lies. These expressions
can. bowever, all be expressed by the same formula. The
of the

yortions of L corresponding to the parts ¢ - a2 ¢
K

potential are similarly signitied. and we have
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and {1 2] means the greatest integer contained oo 2. The

function Jou.gr may be expressed as <umntions, and it has
the property

S T B3

The sum formuln is, with g - p »
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Values of the funetion Jogoe
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where ( I,) s the binomial coeflicient Karey /f( o 1y )
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(_i)/ ):'121;!(:;-'.’,‘)!

and Bop.gris the beta funetion
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19 eosi "t gidp (B 15a)

sin??

The Tunction Jiuy, i has been caleulated for g, w taken
0, 1. 2.3, 4. 5. Beeanse of the property (B3, it is only
necessary to give a trinngulae areay, which appears in the
above table.

Now consider the functions Ky and Ky ie), defined after
cquation (B125. 1t is convenient, for computational par-
poses, to express these in terms of the incomplete beta
funetions, defined as

cos b

S B eost ! Bde

3, ,.-(]I,t/l 2’

0

tB15h)

[
’ Ep [(1 '*E)d»]’l'-c.
g

A tabulation of the incomplete beta functions is available in
11, Note that when the symbol B is written
without a subseript, the complete integral is meant, that is,
in cquation (BLiby, # equals 00 Tt is necessary to exereise
<ome eare when interpreting Kuv) and  Kytvy beta
funetions beeause of the upper imit. Thus, sinee

reference

as

.
cos 1i-o

Kivy 120D, [ sine o

Jo

we have the following eases:
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A similar line taken with Ky o leads to
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[t is conventent to express these forees in terms of dimen-

sionless quantities,

we have

o e

.
J \

.
1

ate) e

:lll(l

. A, [
F w,\l/'“{Z.\

Thus setting

ty-=

£
Lg= »
¢ e

My

try - MY dr, [iu" R

}‘u.\
Ju

£
Ly - My dr,

'

My
(S

14

I

S

Y]

Vet
e Mt

=in""' ode

ety

1!
fqe M

TR

II) -
2ulyon-

i 8410] ¢

L (B1w

M, ) e

Ly ey (B20$)

][I,’,(g/ -nj -

(B21)

The integrals Lovy and Tiovr ean be simplified by reversing

the order of it

wration.

Thix can he ace

omplished in a

straight-forward manner by merely inspeeting the region of

mtegration i the r.8 plane.
Depending npon the relation between the echord

lv.

length and the time, we see
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st the integral
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APPENDIX C

DERIVATION OF RECIPROCITY RELATIONS

According to referenee 5, the reviprocity relation for
general three-dimensional ansteady motion can be written

J ‘ ’ A’j’; Criap AW g b daeudydt,
S

’ ’ ‘—\M Crap oW gty it O
JI g
'

where the volume of integration Vs that swept ot syt
space by thewine, The subseript ) vefees to the wing moving
in the Torward duection and sabseript 2 eefers 1o the wing
nun\ill'_' i the 1!!)')!).\“(' ‘Ill'('l‘lil)ll i the same manner, The
coordinate svstems are related by

7z o2
; ' T

whete « e are wing semi=pan nd chord. respectively s and 7
i~ ~ome tined vabue of times These quantities are clucidated
B IS

]

Fooookr Is 0 Coamhinate sy ~tee i torward and roversed e,

Now et the wing associated with the subseript 1 have the
vertieal veloerty distribation

" ,_.!/‘“’ . (, . .,‘lf‘ )'( N ('”‘ )

i

ansd that a=soctated with the subseript 2 have
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Then
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“xy

Substitition of these results o equation (01 vields
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Equation €2 can be differentiated watle respect wa f

vielding
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The inomiad expanston s now performed
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